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Abstract
We investigate the stability of the metallic state in the Hubbard model on
the Kagomé lattice at half filling. By means of the variational Monte Carlo
simulations including onsite and nearest neighbour doublon–holon correlations,
we clarify that the Mott transition occurs at Uc ∼ 11.5t in the system at
zero temperature, which is consistent with the recent results obtained by the
dynamical cluster approximation. The stability of the Mott insulating state is
also addressed.

Strongly correlated electron systems on geometrically frustrated lattices have attracted current
interest. One of typical examples is the transition-metal oxide NaxCoO2·yH2O(x ∼ 0.35, y ∼
1.3), which exhibits unconventional superconductivity below the critical temperature Tc ∼
5 K [1], stimulating further theoretical investigations [2–12]. One of the remarkable points
is that if the hopping matrix elements via oxygen orbitals are properly taken into account, the
system can be regarded as interpenetrating Kagomé lattices [13, 14]. Therefore, in recent years,
there has been renewed interest in the effect of geometrical frustration in the Kagomé electron
systems [13–17].

Motivated by this, we consider the effect of frustration on the Hubbard model on the
Kagomé lattice (see figure 1(a)), which is composed of corner-sharing triangles. For simplicity,
we adopt the decorated square lattice with some diagonal bonds, as shown in figure 1(b), which
is topologically equivalent to the original one. The model Hamiltonian is explicitly described
as

H = −t
∑

(im, jn)σ

c†
imσ c jnσ + U

∑

im

c†
im↑cim↑c†

im↓cim↓, (1)

where c†
imσ (cimσ ) is the creation (annihilation) operator of an electron at the i th unit cell

together with a relative position m(= 1, 2, 3) with spin σ(=↑,↓). t is the hopping integral
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(a) (b)

Figure 1. (a) Original Kagomé lattice and (b) decorated square lattice, which is topologically
equivalent to (a).

(This figure is in colour only in the electronic version)

(a) (b)

Figure 2. (a) Dispersion relations and the density of states (DOS) for the non-interacting case.
(b) Fermi surface at half filling.

between the adjacent sites and U the Coulomb interaction. We diagonalize the non-interacting
Hamiltonian in terms of the unitary transformation:

H0 =
∑

kασ

εkαa†
kασ akασ , (2)

where akασ (a†
kασ ) is the annihilation (creation) operator. εkα(εk1 � εk2 � εk3) is the dispersion

relation for the αth band, as shown in figure 2(a). The Fermi level is located in the dispersive
band (α = 2) at half filling, and thereby the paramagnetic metallic state is realized in the
non-interacting case. On the other hand, in the large U limit, the Hubbard model equation (1)
is reduced to the quantum Heisenberg model on the Kagomé lattice, where the non-magnetic
ground state is realized [18–21]. Therefore, we restrict our discussion to the paramagnetic
ground state expected naively.

To clarify how the introduction of the interaction affects the stability of the metallic state
in the frustrated system, we make use of the variational Monte Carlo (VMC) method [22–24],
where the lowest-energy state in a given parameter space can be determined. In comparison
with other numerical methods, this method has an advantage in treating large clusters to discuss
the ground state properties in the thermodynamic limit. For example, the quantum Monte Carlo
simulations in general suffer from the minus sign problem and the path integral renormalization
group method may have a difficulty in estimating physical quantities in the thermodynamic
limit when the Coulomb interaction U is large. The VMC method has successfully been applied
to various correlated electron systems such as frustrated systems [6, 25–29] and multi-orbital
systems [30].
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Figure 3. Ground state energy per site E/t as a function of the Coulomb interaction U . Solid
(open) circles represent the optimum energy for the trial state equation (3) (equation (6)). The inset
shows the optimum variational parameters for equation (6).

To apply the VMC method to the Hubbard model on the Kagomé lattice, we first consider
a Gutzwiller type trial state [31] as

�g = Pgφ, (3)

Pg =
∏

jm

[
1 − (1 − g) D̂r j m

]
, (4)

where D̂r j m = n jm↑n jm↓, g is a Gutzwiller factor for onsite correlations, and

φ =
∏

|k|>kF ,σ

a†
k2σ

∏

kσ

a†
k1σ |0〉. (5)

It is known that the Gutzwiller wave function describes the Mott transition in infinite
dimensions [32], but not in low dimensions [24]. Therefore, it is necessary to take into account
spatially extended electron correlations beyond onsite ones. To this end, we also consider
another trial state including nearest-neighbour doublon–holon correlations [33–36] as

�Q = PQ�g, (6)

PQ =
∏

jm

[
1 − μQ̂ jm

]
, (7)

Q̂ jm = D̂r j m

∏

τ

[
1 − Ĥr j m+τ

]
+ Ĥr j m

∏

τ

[
1 − D̂r j m+τ

]
, (8)

where τ runs over all the nearest-neighbour sites and Ĥr j m = (1−n jm↑)(1−n jm↓). By optimiz-
ing these trial states, we can discuss the role of onsite and intersite correlations in the system.

By performing the VMC simulations for each trial state, we obtain the ground state energy
for the system (N = 432), as shown in figure 3. Needless to say, the energy obtained by the
trial state �Q is always lower than that for �g . Note that the difference between their curves
is changed, depending on the magnitude of the interaction. When U is small, the energies
for both trial states are almost the same, where onsite correlations are relevant. On the other
hand, the increase of the interaction U yields the energy gain in �Q , implying that intersite
correlations are important for the ground state. Furthermore, we find a drastic change in the
curves of the variational parameters for �Q , as shown in the inset of figure 3. At U = 0, the
free electron states are realized, where (g, μ) = (1, 0). The introduction of the interaction first
enhances the onsite electron correlations, resulting in the rapid decrease of g. Further increase
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Figure 4. (a) The probability of doubly occupied states as a function of the Coulomb interaction U ,
(b) the lowest eigenvalues of the charge structure factor N1(q) for U = 8, 10, 12, and 15 from the
top to the bottom, and (c) an enlarged view of the region around the � point.

of interaction enhances the doublon–holon correlations, where the corresponding parameter
μ is changed. Note that the jump singularity appears in both parameters at (U/t)c ∼ 11.5,
although that for g is very small. On the other hand, these anomalies do not appear in the small
system (N = 108). Although a careful analysis of the size dependence is needed to determine
the order of the transition in the thermodynamic limit, the existence of a weak first-order phase
transition is naively expected, which is consistent with the result obtained by the dynamical
cluster approach [17].

To reveal the nature of the transition, we calculate the physical quantities in terms of the
optimized trial function �Q . In figure 4(a), we show the probability of the doubly occupied
states 〈D〉, in which the statistical error for each point is almost negligible. In the non-
interacting case (U/t = 0), the empty state, one-electron states with a spin, and doubly
occupied states are equally realized, where 〈D〉 = 0.25. The introduction of the Coulomb
interaction decreases the probability of doubly occupied states, as shown in figure 4(a). Finally,
the Mott transition occurs to the insulating phase with a small jump characteristic of the weak
first-order transition. We also calculate the charge structure factor, which is defined as

Nmn(q) =
∑

i j

[〈Nim N jn〉 − 〈Nim〉〈N jn〉
]

eiq(rim −r j n), (9)

where Nim = ∑
nimσ , rim = ri + dm , d1 = 0, d2 = x/2, and d3 = y/2. In figure 4(b), we

show the lowest eigenvalues of the charge structure factor N1(q). The singularity accompanied
with the Mott transition appears in the vicinity of the � point (see also in figure 4(c)), where
linear behaviour Nq ∼ q appears in the metallic phase (U < Uc), while quadratic behaviour
Nq ∼ q2 appears in the Mott insulating phase (U > Uc). This implies that the Fermi surface
vanishes due to the Mott transition. In addition, no sharp peak structure emerges in the spin
structure factor (which is not shown here). Therefore, we can say that the transition drives
the system to the Mott insulating state at the critical point U = Uc, which does not indicate
instability to any magnetically ordered state, as far as the trial state equation (6) is concerned.

The present results are consistent with those obtained recently by the dynamical cluster
approach with quantum Monte Carlo simulations [17]. It was claimed that a first-order
transition with hysteresis occurs to the non-magnetic Mott insulating phase at the critical point
(U/t)c ∼ 8.4, which is slightly different from our result, (U/t)c ∼ 11.5. Furthermore, it was
suggested that anomalous behaviour in the spin correlation function shows up in the metallic
state close to the Mott critical point as the temperature is varied. In contrast, we could not
find such spin correlations at zero temperature. This may imply that the effect of frustration is
not incorporated well in our treatment, which yields the slight difference for the critical points.
Therefore, it is necessary to improve the trial state so as to describe the spin correlations more
precisely, which is now under consideration.
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